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1 Introducao

O Ajuste dos Escores de Propensao tem sido amplamente utilizado para reducao de
vieses relacionados a erros de nao cobertura e nao resposta, bem como para amostras
nao probabilisticas (Elliot, 2009; Elliott & Valliant, 2017). Este artigo apresenta uma
aplicacao em amostras voluntarias para populacoes conhecidas em combinagao com
uma técnica de selegdo de varidveis baseada em arvores aleatérias (Random Forest).
A andlise parte de uma amostra numerosa de escolas basicas que aderiram voluntaria-
mente ao Simet (Sistema de Medigao de Trafego Internet), seja via firmware instalado
no roteador ou software no computador para coleta automatica de medidas de quali-
dade da Internet. Sendo a populacao de escolas basicas conhecida e suas caracteristicas
medidas pelo Censo Escolar, a metodologia de ponderacao apresentada tem como ob-
jetivo permitir a estimacao de medidas de qualidade da Internet para o conjunto de
todas as escolas a partir das medigoes disponiveis somente para as escolas da amostra
de escolas participantes no Simet.

No entanto, uma vez que a instalacao dos medidores nas escolas nao se da por um pro-
cesso de amostragem probabilistica, nao sao conhecidas a probabilidade de uma escola
receber o monitor bem como a populagao representada pelas escolas que instalaram
o medidor. Para alcancar o objetivo de estimar as medidas de qualidade da Internet
a partir da ponderacao baseada nas informagoes coletas em escolas que possuam o

medidor, é necessario:

(a) Determinar que populacao alvo pode ser representada pelas escolas que possuem
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medidores instalados;

(b) Construir pseudo-pesos amostrais para as escolas que possuem medidores para

expandir os resultados de qualidade obtidos para a populacao estabelecida em

(a).

2 Dados

As bases de dados utilizadas para a analise das medidas de qualidade da Internet
nas escolas sao (a) o Censo Escolar mais atualizado', doravante Censo, e (b) a base de
dados da amostra das escolas com medidores Simet?. O Censo possui informacoes sobre
os estabelecimentos de ensino, alunos, gestores e profissionais nos estabelecimentos de
ensino basico. Ja os dados do Simet possuem informagcdes sobre a qualidade da Internet
medida por um firmware instalado no roteador ou por software no computador. Eles
registram medicoes periddicas enquanto os dispositivos estiverem em funcionamento de
forma independente. Para a anélise, foi consolidada uma base agregando a informagao
da existéncia ou nao de medidores Simet em cada escola as demais informagoes coletadas

no Censo para todas as escolas.

2.1 Determinacao da populacgao representada pelas escolas com

medidores

A coleta de dados sobre a qualidade da conexao das escolas é realizada por um firmware
instalado no roteador ou por um software em um computador conectado a Internet.
Ambos realizam medicoes da qualidade da Internet de forma automatica em espacos de
tempo previamente estabelecidos, sem a necessidade de intervencao humana. Para que
elas sejam realizadas, apenas é necessario que o dispositivo esteja ligado e conectado.

A partir deste enquadramento foram definidos os pré-requisitos para a medicao de qua-
lidade da Internet nas escolas, quais sejam, (a) existéncia de acesso a Internet na escola
e (b) existéncia de computador ligado & Internet na escola. Quando observados os
pré-requisitos e as estatisticas de instalacao dos medidores por tipo de administragao

escolar®, ver Tabela 1, verificou-se que a populacao de escolas que poderiam ser re-
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presentadas pelas escolas com medidores é formada pelo conjunto de escolas publicas

municipais e estaduais da educagao bésica com acesso a Internet e com computador.

Tabela 1: Escolas do Censo: existéncia de medidores por dependéncia administrativa

Tipo de administragao Nao Sim Total
Publica Federal 735 - 735
Publica Estadual 18.049 15.411 33.460
Publica Municipal 98.570  34.059  132.629
Privada 57.803 22 57.825
Total 175.157  49.492  224.649

Fonte: Bases Censo Escolar 2022 e Simet (Abril/2023).

Dessa forma, a base final para ajuste dos pseudo-pesos é composta pelas escolas publicas
estaduais e municipais que possuem computador e acesso a Internet declarado no Censo.
Adicionalmente, foi tratada para a exclusdo de observagoes atipicas (outliers) e de
escolas que possuem o Simet instalado a despeito de declararem que nao possuiam
computadores e/ou acesso a Internet no Censo. A exclusdao deste grupo de escolas
que possuem o Simet instalado no processo de estimagao dos pseudo-pesos se justifica
por nao estarem no recorte do universo, mas serao reincluidas na base de medigoes de
qualidade com peso igual a 1 (um), representando apenas elas mesmas. Da mesma
forma, escolas classificadas como outliers seguirao a mesma regra de inclusao na base

de medidas de qualidade caso possuam Simet instalado?.

3 Representatividade das escolas com medidores e

estimacao de pseudo-pesos

Uma vez que a instalacao dos medidores Simet nao ocorre de forma aleatéria, nao é
possivel, a priori, considerar o conjunto das escolas com medidores como representativo
do conjunto de escolas estabelecido para a andlise. Dessa forma é necessario avaliar a
“representatividade” das escolas desta amostra de escolas com medidores para expandir
os resultados para as escolas municipais e estaduais de educagao basica com computa-
dor e acesso a Internet. Uma das possibilidades encontradas na literatura para correcao

de vicios de autosselecao (self-selection) é a construcao de pseudo-pesos. Seguindo esta

e funcionamento do Simet nas escolas.
4Nao foram excluidas escolas outliers que nio tivessem o Simet instalado até a atualizacio da base
do Censo de 2022.
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abordagem, se buscaria estimar a probabilidade de uma escola ter um medidor ativo
instalado a partir de um cadastro completo da populacao, que aqui seria o Censo. Estas
probabilidades, chamadas de escores de propensao (propensity scores), seriam transfor-
madas em pseudo-pesos correspondentes ao inverso da propensao de ter um medidor
ativo instalado. Dessa forma, seria possivel generalizar os resultados da amostra para
todo o conjunto de escolas elegiveis.

A estimagao dos pseudo-pesos se da a partir do ajuste de um modelo de regressao
logistica no qual a variavel resposta é um indicador bindrio (Y;) que identifica a presenga
de um medidor na escola i. Ja as variaveis explicativas seriam as disponiveis no Censo,
sendo 190 variaveis categéricas e 113 numéricas. Por se tratar de ajustes de modelos
logisticos para um banco de mais de 100.000 registros, tanto a selecao de varidveis
relevantes quanto as estatisticas de bondade de ajuste do modelo nao sao eficientes.
Dessa forma, optou-se por uma metodologia em duas etapas. Na primeira foram ajus-
tados dois modelos de arvores aleatérias (Random Forest, RF) tendo Y; como varidvel
resposta, mas separando as variaveis categoricas e as numéricas como variaveis explica-
tivas. Um dos resultados obtidos é o grau de importancia de cada variavel explicativa
na predicao da existéncia de medidor. Assim, em uma segunda etapa, foram ajustados
modelos logisticos para a estimacao dos pseudo-pesos incluindo gradualmente variaveis
categdricas e/ou numéricas a partir da ordem do grau de importancia determinado pela

analise de RF. O modelo logistico é dado pela férmula:

P(Y; =1
t0g (1o gy ) = BT+ X (1)

Onde: Y; é a variavel resposta, assumindo o valor 1 se a escola i possui medidor
Simet instalado, e valor 0, caso contrario; X é um vetor com os valores de variaveis
explicativas categéricas da escola ¢ selecionadas a partir da importancia estabelecida
pelo modelo de RF; X" é um vetor com os valores de varidveis explicativas numéricas
da escola i selecionadas a partir da importancia estabelecida pelo modelo RF, P(Y; = 1)
representa a probabilidade da escola ¢ ter medidor instalado, e a e 31, B3 sao parametros
do modelo, a serem estimados.

Ja as estimativas para P(Y; = 1) fornecidas pela expressao

(2)

1+ exp(a+ 1 XF) + fo X[

sao os chamados escores de propensao considerados na metodologia, sendo que &, 3 e

B2 sao as estimativas dos parametros obtidas com base no modelo de regressao logistica
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ajustado. Foram ajustados diversos modelos logisticos, a cada passo incrementando o

nimero de varidveis explicativas consideradas (tanto as categéricas como as numéricas).

, 1
Para cada modelo foram construidos os pseudo-pesos dados por w; = ———.

P(Y; = 1)
Estes pseudo-pesos foram calibrados para o total de escolas considerando distribuicgoes

marginais por Unidades Federativas (UFs), tipo de administracdo e localizacao (ur-
bano/rural)®. A partir dos pseudo-pesos calibrados foram calculadas seis estatisticas
resumo®. Estas estatisticas, que sumarizam desvios entre estimativas obtidas com em-
prego dos pseudo-pesos calculados e os correspondentes valores populacionais calculados

com dados de toda a populacao, sao apresentadas a seguir:

B
° Som/a d:OS desvzo's absolutos para SDA, — Z | ﬁ? _ p?] (3)
variavels categoricas: P
: A K r1pe - po
e Soma dos desvios absolutos rela- SDAR, = Z Z ( Py — Py ) (4)
tivos para varidveis categéricas: a1 =1 Py

Onde: a é uma variavel categdrica existente na base, A é o total de variaveis categéricas
da base, 7 é uma categoria da variavel categérica a existente na base, K, é o total de

categorias da variavel categérica a da base, e p é a proporcao.

B
e Soma dos desvios absolutos para SDA, = E ( I — m?| (5)
.. , . j j
variaveis numéricas: b1
e Soma dos desvios absolutos rela- - |m? — m§|
! i o SDAR, = E ; (6)
tivos para variaveis numéricas = m;

Onde: b varidvel numérica existente na base, B tultima varidvel numérica da base, e
m é a média; Var. é o nimero de varidveis categdricas em que ao menos um intervalo
de confianca de 95% para uma proporcao de uma categoria nao contém a proporcao
observada no Censo; e Var, é o nimero de variaveis numéricas em que o intervalo de
confianca de 95% para a média nao contém a média observada no Censo.

As varidveis de interesse para divulgacao do resultados (UF, tipo de administragao

e localizagao) nao foram consideradas nas estatisticas das varidveis categéricas por

5Sa0 as varidveis de interesse para divulgacdo dos resultados, de forma que se buscou uma solucio
que permita a divulgagao dos resultados como se a amostra fosse representativa para o universo em
questao.

60s pseudo-pesos e planos amostrais derivados foram declarados e as estatisticas calculadas por
meio do Pacote survey da linguagem R.
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passarem pelo processo de calibracao dos totais conhecidos do universo da pesquisa por

pos-estratificacao”.

4 Resultados

Figura 1: Porcentagem de varidveis alvo fora do Intervalo de Confianga de 95%*
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Fonte: Bases Censo Escolar, Simet e modelos.

*Os modelos foram ordenados seguindo (1) o menor ntimero total de varidveis e (2) o menor nimero
de varidveis numéricas

A selecao do modelo seguiu a observacao dos graficos com os resultados para o con-
junto completo de modelos ajustados (combinagoes possiveis de varidveis numéricas e
categdricas). Optou-se por um modelo mais parcimonioso, com um menor nimero de
variaveis, que mantivesse um vicio total préximo aos valores mais baixos. Assim, foi
selecionado o modelo com 5 varidaveis numéricas e 140 categoricas — M5&140 destacado

nos graficos.

70 método s6 é passivel de aplicacio quando todos os estratos possuirem ao menos uma observacao.
Caso algum dos estratos ndo possuir observagao sera aplicado o método rake.
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Figura 2: Soma dos desvios relativos por modelo ajustado™

40
172)
o
=
T
630-
g
1%2)
2
> u
1)
4 !
B 20 u
2]
o
©
©
1S
3 101
o
o o
b B8 0w o8 2 o, w2 8§ 228 ¥ 4§ B 2 8§ o4 R & 8 9
¥ ¥ & & OB F @ B IdY ¥ S E o 2R Fg P I =
5 1B S L S LW S N 9 JSg®¥ X & & & o S & & & 5
s ¢ & ¥ @ g2 2@ & g ¢eui 2 8 & ¥ 8 g B ¢ 8 9
= = = = = =2 s 22z = = = = = §$ = = = £

— Categoricas Calibradas Numéricas Calibradas

Fonte: Bases Censo Escolar, Simet e modelos.
*Os modelos foram ordenados seguindo (1) o menor nimero total de varidveis e (2) o menor nimero
de varidveis numéricas

Figura 3: Comparagao da mediana por unidade fedarativa com e sem pseudo-pesos™
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Fonte: Bases Censo Escolar, Simet e modelos.
*Os modelos foram ordenados seguindo (1) o menor numero total de varidveis e (2) o menor nimero
de variaveis numéricas
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Como exemplo, é possivel ver que as estimativas da mediana por unidade federativa
para a velocidade de download apresentam diferencas significativas. Além de ser re-
presentativa apenas para as escolas que possuem o medidor (e nao para as escolas com

computador e Internet), elas mostram as diferengas geradas pelo viés de autosselegao.

5 Conclusao

A aplicacao de modelos para obtencao de pseudo-pesos seguida de calibracao destes
para algumas distribui¢oes marginais de interesse resulta em uma base de dados que
permite a estimacao das medicoes de qualidade da Internet para as escolas publicas
estaduais e municipais com computador e acesso a Internet. A atualizacao das estima-
tivas utilizando o processo de andlise de dados e estimacao de pseudo-pesos é necesséria
caso sejam incluidas novas escolas, tanto por alteracoes na base de dados da populagao

alvo de escolas no Censo quanto pela inclusao de novas escolas com medidor Simet.
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